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SUMMARY

Experiments concerning the properties of soap �lms have recently been carried out and these systems
have been proposed as experimental versions of theoretical two-dimensional liquids. A silk �lament
introduced into a �owing soap �lm, was seen to demonstrate various stable modes, and these were,
namely, a mode in which the �lament oscillates and one in which the �lament is stationary and aligns
with the �ow of the liquid. The system could be forced from the oscillatory mode into the non-
oscillatory mode by varying the length of the �lament. In this article we use numerical and computational
techniques in order to simulate the strongly coupled behaviour of the �lament and the �uid. Preliminary
results are presented for the speci�c case in which the �lament is seen to oscillate continuously for
the duration of our simulation. We also �nd that the �lament oscillations are strongly suppressed
when we reduce the e�ective length of the �lament. We believe that these results are reminiscent of
the di�erent oscillatory and non-oscillatory modes observed in experiment. The numerical solutions
show that, in contrast to experiment, vortices are created at the leading edge of the �lament and are
preferentially grown in the curvature of the �lament and are eventually released from the trailing edge
of the �lament. In a similar manner to oscillating hydrofoils, it seems that the oscillating �laments
are in a minimal energy state, extracting su�cient energy from the �uid to oscillate. In comparing
numerical and experimental results it is possible that the soap �lm does have an e�ect on the �uid �ow
especially in the boundary layer where surface tension forces are large. Copyright ? 2004 John Wiley &
Sons, Ltd.
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INTRODUCTION

Experiments concerning the properties of soap �lms have recently been carried out [1–3] and
these systems have been proposed as the experimental versions of theoretical two-dimensional
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liquids. Indeed, we note that particularly interesting �uidic properties were observed when
a silk �lament was introduced into the �owing soap �lm [1]. The �lament was seen to
demonstrate stable modes, which were, namely: a mode in which the �lament oscillates; and
one in which the �lament is stationary and aligns with the �ow of the liquid. It was also
seen that the system could be forced from the oscillatory mode into the non-oscillatory mode
by reducing the length of the �lament. In this article we use numerical and computational
techniques in order to simulate the coupled behaviour of the �lament and the �uid and thereby
investigate the complex behaviour of �uid=structure interaction.
We wish to illustrate our approach by choosing a speci�c case in which the �lament is

seen to oscillate continuously for the duration of our simulation and preliminary results for
this system are presented here. We �nd that the �lament oscillations are strongly suppressed
when the e�ective length of the �lament is reduced and we believe that these results are
reminiscent of the di�erent oscillatory and non-oscillatory modes observed in the experiments
of Zhang et al. in Reference [1]. However, our numerical studies indicate that vortices are
created at the leading edge, in a similar fashion to the K�arm�an vortex street emanating from
a cylinder, which are then preferentially enhanced along the length of the �lament. These
vortices are then convected downstream from the trailing edge of the �lament, thus providing
a vortical structure whose sign changes with each ‘�ap’ of the �lament.

THEORY AND NUMERICAL METHOD

In order to describe the underlying theory and our solution procedure, this section is divided
into three sub-sections. The �rst subsection describes the �uid �ow equations, whereas the sec-
ond subsection describes the formulation for the solid �lament. The �nal subsection provides
a description of the �uid=structure interaction algorithm.

Fluid �ow equations

We assume that the �uid is incompressible, with a viscosity that is Newtonian in form, and
that the density is constant. We use similar assumptions to those utilised in experiments for
measuring the viscosity of soap �lms [4]. The �ow is treated as being isothermal and laminar,
and an argument for this assumption is given below. The relevant time-dependent equations
are thus given by

Dũ
Dt
= − 1

�
∇p̃+ �∇2ũ (1)

Here ũ= {ũ; ṽ} is the 2D vector �eld corresponding to the x- and y-directions, p̃ is the �uid
pressure, � is the density of the �uid, and � is the kinematic viscosity of the �uid. We non-
dimensionalise this equation by choosing a characteristic length L (chosen to be the length of
the �lament) and characteristic velocity U∞ (U∞ is the maximum velocity at the inlet to 2D
�uid domain), and hence we may write

x=
x̃
L
;y=

ỹ
L
; u=

ũ
U∞

; v=
ṽ
U∞

; t=
t̃U∞
L
;p=

p̃
�U 2∞

(2)
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SIMULATION OF FILAMENT IN SOAP FILM 315

Figure 1. The computational �uid domain. Note that no-slip boundary conditions are imposed
on the �uid mesh edges AC and BD and that the motion of the �lament is imposed on the

�uid as a moving boundary condition.

Equation (1) now becomes

Du
Dt
= − ∇p+ Re−1∇2u (3)

with a Reynolds number given by Re=LU∞=�. The �ow domain, shown in Figure 1, consists
of a simple 2D rectangular area whose non-dimensional length is H and width h. For the
cases presented by Zhang et al. [1], the viscosity is given in terms of a surface viscosity and
as such the authors calculate a large Reynolds value of approximately 4:5× 104. Examination
of the �ow shows clearly that the �ow is not turbulent, which would normally be expected
at such a high Reynolds number. However Ruttgers et al. [2] provide a relationship between
the ‘surface viscosity’ and the more frequently found bulk ‘3D’ value. Indeed, we note that
this relationship implies that the Reynolds number is of the order of 102 and hence the �ow
is assumed laminar.
The momentum equations given by Equation (3) are solved using a commercial �nite-

element code FIDAP. However the code allows a moving boundary constraint to be applied
within the computational domain. It is important to realise that this moving boundary condi-
tion is generated by the position and velocity of the �exible �lament, which are themselves
determined via solution of the �lament Euler–Lagrange equations (see below.) These con-
straints may thus be applied and released as a function of time and position for various nodal
degrees of freedom. In this present example, the constrained degrees of freedom are simply
the two co-ordinate non-dimensional velocities, u= {u; v}. The �nite-element algorithm uses
four-noded linear quadrilateral elements. Velocity is represented linearly, whereas pressure is
stored at the element centre as a piece-wise discontinuous function. This ensures stability as
well as being able to represent a solid within the �uid domain (as shown in Figure 1).
In order to simulate the 2D soap �lm �ow, we impose no-slip boundary conditions on

the top and bottom sides (denoted AC and BD, respectively) of the computational domain as
shown in Figure 1. The inlet (AB) has imposed a pressure boundary condition Pi and similarly
for the outlet (CD) Po. The pressure di�erence Pi − Po is set to ensure that the maximum
(non-dimensional) velocity found at the inlet is of order 10◦, which agrees with our procedure
of non-dimensionalization. There is also a ‘no-slip’ condition on the �lament surface, which
corresponds to imposing the �uid vector �eld to be equal to the �lament velocity vector at all
nodes ‘inside’ the �lament, this is described in more detail in the section on �uid=structure
interaction algorithm.
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Figure 2. Representation of the (s − 1)th and sth element of the ‘pendulum.’ Note that each element
has a sti�ness coe�cient, Ks, and a damping coe�cient, Cs, associated with it.

Filament equations of motion

We assume that the �lament is of total length L and has total mass is M . Furthermore,
we assume that it is composed of N equal length, homogeneous, �lament elements. Thus,
each element is of length l̃=L=N and of mass m̃=M=N . The elements are �xed to one
another at their hinge (or fulcrum) points. The whole �lament (or �ag) is thus assumed to
be approximated by a form of an ‘N -tuple pendulum’ in which each hinge, denoted by a
subscript, s, has a positive spring sti�ness coe�cient, K̃ s, and a positive damping coe�cient,
C̃s, associated with it. Figure 2 shows a representation of (s − 1)th and sth elements of the
‘pendulum’.
In order to model the motion of the ‘N -tuple pendulum’, we form a system of equations

using Lagrange mechanics in similar manner to that of Fenlon et al. [5, 6]. We must therefore
determine the kinetic and potential energies and the non-conservative forces acting on the
elements. It is relatively straightforward to show that the kinetic energy T of a �lament of N
such elements is given by

T =
1
2
m̃l̃

2 N∑
i=1

i−1∑
j=1

i−1∑
k=1
�̇j�̇k cos(�j − �k)

+
1
2
m̃l̃

2 N∑
i=1

i−1∑
j=1
�̇i�̇j cos(�i − �j) + 16 m̃l̃

2 N∑
i=1
�̇2i (4)

where �s is the angle subtended by the element, s, with respect to the x co-ordinate axis. The
potential energy V due to gravitational e�ects and the sti�ness at each element is given by

V =
1
2
m̃g l̃

N∑
i=1
(2N − 2i + 1)(1− cos(�i)) + 12

N∑
i=1
K̃i(�i − �i−1)2 (5)

where the terms due to the sti�ness at each hinge are valid only for small values of �s−�s−1 ∀s
(and that �0 = �̇0 = 0). (Note that the subscript s for the element angles run from 1 to N ,
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although we may de�ne—notationally only—an angle �0 which aids our de�nition of the
potential energy in Equation (5).) Indeed, this is an explicit assumption of our treatment of
the �lament. We also note that gravity is assumed to work in the (positive) x-direction. The
Lagrangian given by �L=T − V may now be utilised in order to obtain the Euler–Lagrange
equations by determining

d
dt

(
@ �L

@�̇s

)
− @ �L
@�s

= f̃s(�s; �̇s) (6)

(Note that the symbol �L refers to the Lagrangian and that L refers to the dimensional �lament
length.) The function f̃s(�; �̇) represents the externally applied torques exerted on a given
element s and these torques are non-conservative. We subdivide the terms within this function
into two distinct pieces, given by

f̃s(�1 · · · �N ; �̇1 · · · �̇N )=−C̃s(�̇s − �̇s−1)− C̃s+1(�̇s − �̇s+1) + 12 �̃sl̃ (7)

The damping terms are thus encoded in the terms C̃s(�̇s − �̇s−1)+ C̃s+1(�̇s − �̇s+1), and favour
a di�erence between angular velocities of successive elements (both above and below a par-
ticular element s) which is small. A very sti� �lament is thus approximated by having large
values for both K̃ s and C̃s. The term �̃s in Equation (7) refers to external forces (distinct from
the internal sti�ness and damping terms) acting on the �lament elements creating a torque
of strength 1=2�̃sl̃, which in this case are due to the �uid pressures forces generated by the
(�owing) liquid. For the present case we assume that viscous shear forces acting parallel to
the pendulum are negligible.
The Euler–Lagrange equations may be determined analytically, in order to give

s−1∑
i=1

��i cos(�s − �i)
(
N − s+ 1

2

)
+

N∑
i=s

��i cos(�s − �i)
(
N − i + 1

2

)
− 1
6
��s

+
s−1∑
i=1
�̇2i sin(�s − �i)

(
N − s+ 1

2

)
+

N∑
i=s
�̇2i sin(�s − �i)

(
N − i + 1

2

)

+
K̃ s

m̃l̃
2 (�s − �s−1) + K̃ s+1

m̃l̃
2 (�s − �s+1) + C̃s

m̃l̃
2 (�̇s − �̇s−1) + C̃s+1

m̃l̃
2 (�̇s − �̇s+1)

+
(
N − s+ 1

2

)
g̃ sin(�s)

l̃
=
�̃s

2m̃l̃
(8)

We should note that our model uses the fact that by de�nition K̃N+1 = C̃N+1 =0, and hence
�N+1 does not contribute to the Euler–Lagrange equations. In order to formulate a more
general model, we non-dimensionalise the above Euler–Lagrange equations. We do this by
introducing (as before) characteristic scales for mass, length, velocity, and time such that

m=
m̃
M
; l=

l̃
L
; t=

t̃U∞
L

(9)
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The quantities K̃ s, C̃s, and �̃s may also be non-dimensionalised in a similar manner to give

Ks=
K̃ s
U 2∞M

; Cs=
C̃s

U∞ML
; �s=

�̃sL
MU 2∞

; g=
g̃L
U 2∞

(10)

The non-dimensionalised Euler–Lagrange equations are now written as

s−1∑
i=1

��i cos(�s − �i)
(
N − s+ 1

2

)
+

N∑
i=s

��i cos(�s − �i)
(
N − i + 1

2

)
− 1
6
��s

+
s−1∑
i=1
�̇2i sin(�s − �i)

(
N − s+ 1

2

)
+

N∑
i=s
�̇2i sin(�s − �i)

(
N − i + 1

2

)

+
Ks
ml2

(�s − �s−1) + Ks+1ml2
(�s − �s+1) + Cs

ml2
(�̇s − �̇s−1) + Cs+1ml2

(�̇s − �̇s+1)

+
(
N − s+ 1

2

)
g sin(�s)

l
=
�s

2ml
(11)

We note that the ratio of the density of the soap �uid to that of silk (in the experiment
of Zhang et al. [1]) has been estimated to be about 0:9. Hence buoyancy terms and thus
gravitational terms are small, and we henceforth set g to zero. However, we have not yet
considered the e�ects of coupling the �lament to the �uid and the e�ect that this has on our
non-dimensionalisation of the coupled system. The force acting on an element of the �lament
in the ‘dimensional’ system in our Euler–Lagrange equations (namely �̃s) must be related to
the pressure di�erence (between those pressures acting on the ‘bottom’, p̃bottoms , and the ‘top’,
p̃tops , of a �lament element) such that

�p̃s= p̃
bottom
s − p̃tops

⇒ �̃s= l̃�p̃s
(12)

The non-dimensional form of this equation is given by

�s=
(
�fL2

M

)
l�ps=Fl �ps (13)

where �f is the two-dimensional density of the �uid. Furthermore, we note that we may express
the mass of the �lament in the experimental (dimensional) system in terms of the linear density
of the �lament �, where M =�L. The dimensionless variables describing the behaviour of a
single �lament in a �owing two-dimensional soap bubble are given by Equation (10) along
with

Re=
L�U∞
�

; F =
�fL
�

(14)

We assume that coe�cients K̃ s and C̃s are dimensioned properties of the �lament which are
thus independent of the length L of the �lament in the experiment.
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The numerical algorithm uses the equations of motion above of Equation (11) in order to
cast the problem into a matrix equation for the angular accelerations, given by

M ��=p(�; �̇) (15)

We note that the matrix M has elements Ms; i, where

Ms; i= cos(�s − �i)
(
N − s+ 1

2

)
; i¡s

Ms; i=
(
N − s+ 1

3

)
; i= s

Ms; i= cos(�s − �i)
(
N − i + 1

2

)
; i¿s

(16)

The right-hand side of the matrix equation thus has elements ps(�; �̇) given by

ps(�; �̇) =−
s−1∑
i=1
�̇2i sin(�s − �i)

(
N − s+ 1

2

)
−

N∑
i=s
�̇2i sin(�s − �i)

(
N − i + 1

2

)

− Ks
ml2

(�s − �s−1)− Ks+1
ml2

(�s − �s+1)− Cs
ml2

(�̇s − �̇s−1)

−Cs+1
ml2

(�̇s − �̇s+1) + �s

2ml
(17)

The matrix M is inverted to produce an explicit representation of the accelerations

��=M−1p(�; �̇) (18)

Hence, we may thus determine the angular accelerations, for example by using numerical
method such as LU decomposition, if we know all of the angles and angular velocities at a
particular time. We note that the matrix M never became singular in any of the simulation
runs that were performed. However, if such a case were to occur then standard singular-value
decomposition techniques would be used.
The values for the angular accelerations are thus determined at a particular time t once

both the angles and angular velocities are known for each element. These accelerations and
velocities are used to determine the element angles and angular velocities at time t+�t by using
Runge–Kutta integration. LU decomposition algorithms determine the angular accelerations at
time t + �t and this process is repeated until we have determined the �lament’s asymptotic
behaviour with respect to time.
We note the Euler–Lagrange equations are themselves quite ‘sti�’ and so we utilized a

standard adaptive step sizing algorithm for �t in order to maintain the accuracy of the Runge–
Kutta method at all points during our simulation. The sum of the error in all of the element
angles and their angular velocities is set to be 10−8 in these calculations. This set of equations
has been tested and compared with the trivial N =1 system as well as the N =3 system [7],
for the case of �̃1 =0. Using an arbitrary starting point at t=0 for the angles and their
angular velocities and arbitrary values for the sti�ness and damping coe�cient, the di�erence
in solutions was negligible for values of t650.
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Note that the non-dimensional width of the �lament, 2��, was set at 0.04 and that this
value is in agreement with the experimental situation [1]. The results presented in this article
are preliminary and do not constitute an exhaustive survey of the stability of our solution as
the simulation parameters were altered or indeed of the behaviour of the model as a function
of the parameters Ks, Cs, and Re, etc. However, we note that the results did not signi�cantly
change qualitatively when we increased the �neness of the mesh and=or increased the number
of �lament elements, N . (The interested reader is also referred to related articles of Fenlon
et al. [5, 6] which used a similar N -tuple pendulum approach in order to study the behaviour
of lea�ets in arti�cial heart valves and dealt with the question of the numerical accuracy of
this method in detail.) Indeed, we may also note that identi�cation of a single oscillating
case as a function of Ks, Cs, and Re, etc., and determination of both �lament and �uid
properties—as well as reducing the �lament ‘e�ective length’ (see below)—was a highly
non-trivial problem, even without a detailed study of the numerical accuracy of our solution.
This present study outlines our technique and initial results which we believe capture much
of the essential physics of this system, although we intend to carry out further calculations
which will study the numerical accuracy of our approach, the suitability of our Lagrangian
model, and the behaviour of this complex and highly coupled system in more detail. The
results of these calculations will be presented in another article.

Values for the parameters

In order to carry out the simulations and compare with experiments by Zhang et al. [1], values
for the parameters Ks; Cs; Re, and F need to be determined as a function of L. Experimental
values for the kinematic viscosity are given by �=�=�=4×10−4m2s−1 and the linear density
of the �lament �=2× 10−5 kg m−1 [1] give a value for the characteristic velocity as U∞ of
3 m s−1, we thus �nd that

Ks=5:5× 103K̃ sL−1; Cs=1:7× 104C̃sL−2; F =175L

Given that L lies in the range [0.02,0.06] then F must lie in the range [3, 10]. By contrast, it
is much more di�cult to determine the values for Ks and Cs because we have no de�nitive
values for the dimensionalised quantities. However, we choose values for both Ks and Cs
which produce results from our simulations consistent with the results of experiment [1]. It
is found that reasonable results are obtained for K̃ s¡10−2 and C̃s¡10−2. (We furthermore
make an explicit assumption that the e�ects of damping are roughly as important as those of
sti�ness.) The value for the elasticity of silk (namely, E665N m−2) may be used to obtain
a rough value for K̃ s and this value is found to be consistent with the values used in our
calculation.
By re-writing the non-dimensional quantities given in Equation (10) we then have

Ks=
K̃ s

U 2∞�L
; Cs=

C̃s
U∞�L2

(19)

with � the linear material density. If the length of the �lament is altered the corresponding
non-dimensional coe�cients also change. Most notably if the length L is reduced then the
�lament becomes e�ectively ‘sti�er’ and more ‘damped’. Conversely by increasing the length
the �lament becomes ‘soft’ and underdamped. We note that the non-dimensional damping
parameter Cs changes non-linearly with length.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:313–330



SIMULATION OF FILAMENT IN SOAP FILM 321

Filament boundary and initial conditions

With reference to Figure 2 implicit in the Euler–Lagrange equation set is the fact that �0 = 0
and plays no part in the calculations although �1 may be non-zero. We should note however
that the potential in the sti�ness terms would wish to make �1 → 0, that is along the direction
of �ow. It is an interesting test to see whether alternative vortex formulations could be formed
when a zero imposition is placed on �1. Early indications with heart valve simulations studies
suggest that the e�ect is not large.
It is crucial to impose initial conditions which do not lie in or too close to either of the

‘attracting basins’ (namely, the oscillating and non-oscillating modes) when determining the
interface between stationary and oscillatory states. Hence initial conditions for the �lament,
in all presented cases, were such that �s �=0; �̇s=0 ∀s; at t=0. In order to obtain stable
solutions for the Navier–Stokes equations the initial conditions were enforced for 5 time
steps. The �lament was then ‘released’ and made to move under the in�uence of the �uid
forces as described below.

THE FLUID=STRUCTURE INTERACTION ALGORITHM

The solution algorithm for the �uid=structure interaction consists of

• At time t=0 a position and velocity of each of the elemental �laments is assumed
known. The initial �lament position (xi(0); yi(0)) is then ‘mapped’ onto the CFD mesh.
This entails assuming a �nite width of the �lament, 2��, centred about the �lament
elements, and �nding the velocity nodes nveli which are positioned inside the strip (xi ±
�� sin �i; yi ± �� cos �i) as shown in Figure 3.

• These velocity nodes, nveli, are then �agged as prescribed boundary conditions using the
velocities of the nearest �lament centre (ẋi(t); ẏi(t)) which essentially models the �uid
‘no-slip’ condition.

• The Navier–Stokes equations (Equation (3)) using the outer boundary conditions (as
shown in Figure 1) and imposing the prescribed motion of the �lament at time t (as
described immediately above) are iteratively solved over a small time interval �t.

• Since the pressure pro�le imposes its magnitude throughout the boundary layer nodes
in the �nite element mesh used to evaluate the pressure force acting on the �lament
surface are taken from within the same �uid domain as the velocity vector. These are
indexed and averaged along the �lament element. The number of pressure nodes for
each element can vary from a minimum of three upwards, depending on the ratio of
�nite element size to �lament size. The pressure di�erence as given by Equation (12)
is then evaluated and used as part of the non-conservative forces in the Euler Lagrange
equations of Equation (11).

• The Euler–Lagrange matrix equation of Equation (18) is solved over the small time
period �t.

• The position of the elemental �laments is updated to (xi(t + �t); yi(t + �t)).
• And the time is updated to tnew = told + �t.
• The process is repeated until time the reaches some large prede�ned value (30 non-
dimensional seconds was found to be adequate).
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Figure 3. Representation of the �lament ‘mapped’ onto the computational mesh
with constrained degrees of freedom.

This interaction algorithm is termed the ‘�ctitious domain’ method and is essentially a weakly
coupled process. Note that the pressures are sampled within a given distance both above and
below the �lament (and not in the �lament) and an average pressure value acting at each
�lament element was determined. A distance of twice the thickness of the �lament �� was
used and this seemed to provide good results. A fuller treatment of varying the distance in
which the pressures acting on the �lament elements are determined will be carried out in
future and the results of this treatment will be presented elsewhere.

RESULTS AND DISCUSSION

A speci�c case of an oscillating �lament

We now wish to identify a stable oscillating state for the �lament containing only a ‘single
wavelength’ with respect to position along the length of the �lament, closely mirroring the
situation seen in the experiment [1]. The number of elements, N =10, was found to be quite
large enough in order to adequately simulate the properties of the �lament. (Increasing N made
little or no di�erence to the solution, although we note that future calculations will consider
the e�ects of varying N in more rigour—as mentioned above.) The parameter Ks appeared
to have the largest e�ect in the number of wavelengths along the length of the �lament.
As Ks increased, and the �lament becomes sti�er, we found that the number of wavelengths
along the length of the �lament was reduced. As mentioned above, we therefore chose a
value speci�cally for Ks which produced a single wavelength with respect to the length of
the �lament as was observed in experiment [1]. We also found that reasonable results were
obtained for values of Cs which were of approximately the same or smaller magnitude than
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Figure 4. Results for the element angles for a single �lament in an oscillatory mode of e�ective length
(see text for details) of S =1:0.

Ks. In this manner, we obtained a value for the sti�ness coe�cient of Ks=0:013 and adequate
results were obtained for Cs=0:0025. Furthermore, we chose ‘typical’ values for F and for the
Reynolds number of F =1 and of Re=500, respectively. It is important to note that we wish
only to produce a single case in the ‘phase space’ of these parameters, which we know to be
oscillating. We will use these values as reference values when we wish to reduce the e�ective
length of the �lament thus driving the system from an oscillatory to a non-oscillatory phase
and we denote this value of L as Lref . We may now also de�ne a dimensionless quantity
S (which we shall also refer to as the ‘e�ective length’) which represents changes in the
length of the �lament with respect to this reference value, where S=L=Lref . We therefore
argue that at this stage of the algorithm development it is quite reasonable to choose these
parameters for the oscillatory state in such a heuristic manner, as long as we are rigorous
later on when we alter the e�ective length of the �lament. Again, we note that a fuller
investigation of varying all parameters, including the e�ective length S, will be carried out
elsewhere.
Figure 4 shows the angular time evolution of three of the N =10 elements making up the

�lament. We clearly see that the motion of the �lament is oscillating and that the amplitude
of these oscillations is constant, thus indicating a stable oscillatory state.
We furthermore note that the amplitude of oscillations is much larger than our initial

angles at t=0 indicating that the �lament has drawn energy from the �uid. The period of the
oscillation also remains constant for approximately t¿10. We analyse this more quantitatively
by performing a Fourier transform of the angle element time series. Figure 5 shows the Fourier
transform of the time series for four of the element angles.
Using the experimental values of viscosity, a �lament length of 0:03 m and inlet velocity

of 3m s−1, we clearly see a strong fundamental mode at about f=0:2, which corresponds to
a dimensional value of about 20 Hz, which is slightly lower than the experimental result of
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Figure 5. Results for the fourier transform of the time series for the element angles plotted against
frequency (non-dimensionalised) for a single �lament in an oscillatory mode of e�ective length S =1:0.

50 Hz [1]. We note that we primarily wish to prove the principle that we are able to adequately
simulate an oscillating �lament, although we note that, in principle, we are able to choose
values of our parameters (including the pressure boundary conditions) which would provide
a fundamental frequency of 50 Hz in dimensional units, as seen in experiment. However the
parameter space of, at the minimum, four variables is large given the computational e�ort
required for each time-dependent solution.
Animations generated from the numerical time-dependent results show that, for the case

where a single wavelength is present along the �lament (the fundamental mode), the e�ective
blu� body shape of the leading edge of the �lament induces boundary layer separation as
normal. Two small recirculation zones exist and if the body were non-deforming then these
recirculation zones would be shed periodically. However since the �lament is deformable,
as one of the recirculation zones starts to grow the asymmetric pressure pro�le (measured
between upper and lower surfaces of the �lament) induces a curvature in the �lament itself.
This allows two competing phenomena: �rstly, the recirculation zone on the side of concave
curvature grows and this induces further curvature of the �lament; and secondly, the recir-
culation zone on the opposite side is e�ectively trapped by the convexity of the deforming
�lament. Hence only one vortex is allowed to develop at a time and this vortex is convected
along the length of the �lament at the wave-speed of the �lament curvature. We note that
during this convection period the curvature of the �lament essentially ‘follows’ the motion of
the recirculation zone. This tends to suggest that the �apping is essentially a ‘lock-in’ phe-
nomenon [8]. However, although the Strouhal number can be used to represent vortex induced
vibration for non-deformable bodies, the Strouhal number may not be used here because the
body is deformable. The vortices are enhanced by the curvature of the �lament (a function of
the parameters Ks and Cs), which are (in a circular fashion) created by the existence of the
vortex itself. Hence we can see that energy is being given to the �lament from the �uid by
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Figure 6. Filament and velocity vectors plotted for a ‘typical’ pro�le for the oscillating �lament.

virtue of the generation and enhancement of the recirculation zones. This phenomenon is very
similar to that seen in Reference [9] where oscillating foils have their highest e�ciency when
a leading edge vortex is convected downstream and coalesces with the trailing edge vortex to
cause a reverse K�arm�an street, indicating that the fundamental �apping mode corresponds to
the minimal energy state.
Figure 6 shows the velocity vector �eld for a ‘typical’ �lament pro�le with the presence

of a single vortex being shed from the upper part of the �lament trailing edge whilst a small
recirculation zone is being formed at the lower leading edge of the �lament.

Behaviour of the system with varying e�ective length

Experiments showed [1] that the oscillatory motion may be completely extinguished for low
enough values of the �lament length. In order to ratify the numerical model we reduce the
e�ective length S of the �lament whilst keeping all other parameters (such as the viscosity
of the liquid, K̃ s, and C̃s) constant. We do this by choosing a new value for S(¡1) and then
by using Equations (9), (10) and (14). Ks and Cs now both increase in magnitude, whereas
both Re and F decrease. We would thus expect that all of these e�ects would tend, at the
very least, to reduce the amount of oscillation of the �lament, if not completely destroy any
oscillations.
Note that our initial �apping state, governed by the parameters given above, can be ex-

pressed in terms of our ‘e�ective’ length, S(=1:0). Thus, S=0:2 or 0.5 corresponds to a �fth
or a half of the original length respectively. Figure 7 now shows the time variation for the
element at the trailing edge of the �lament for values of S=0:2, 0.5, 0.75 and 1.0.
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Figure 7. Results for the y-value of the trailing edge of the �lament plotted against time in seconds
(non-dimensionalised) for varying values of the e�ective length S.

We note that in order to be as consistent with the experimental situation as possible we
increase the width of the computational domain as we decrease S (although the length of
the computational domain remains constant). This ensures that the numerical simulations take
account of the e�ects of the outer (rigid, no slip) boundaries when the motion of the �lament
is of the order of the width, h, of the soap �lm. Thus, the computational problem becomes
much more intensive as we reduce S due to reducing the individual mesh element size. We
assume that the aspect ratio of the �lament remains the same however.
The amplitude of the non-dimensional oscillations for S=0:5 are about the same as for

S=1:0 so that the amplitude of the oscillations in the dimensional system for S=0:5 are
about half that of S=1:0. The S=0:2 case shows a much smaller amplitude and indeed this
simulation is near to the boundary of our capability computationally due to the increasing
size of the mesh with corresponding decreased length. This might be adequately resolved by
using parallel processing techniques, although this remains the subject of future research. We
note that in this case the �lament covers, at most, two nodal mesh points, and the asymptotic
motion of the �lament with respect to time cannot be seen by the naked eye in our animations
due to the coarseness of the mesh. However, we still believe that the simulation results clearly
indicate that this case does indeed oscillate for S=0:2, albeit (as mentioned above) with a
very small amplitude. We note that, although the mesh nodes which lie within the �lament
may not change for large values of time, the imposed velocities at these nodes clearly do
change and that this is enough to form a stable oscillatory state. However, we are probably
very close to the boundary of critical damping for S=0:2 and we are clearly capturing some
of the essential physics of this complex and strongly coupled system.
By contrast, we may start from an initial con�guration for the �lament in which all element

angles and element velocities are zero and the �lament is thus initially aligned with respect to
the �uid �ow. Our results show that this mode is found to be stable (i.e. non-oscillating) over
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Figure 8. Fourier transform of time evolution of the element angles as a function of non-dimensional
frequency and for an e�ective length of S =0:5.

a large area of our parameter space. For example, we �nd that this con�guration is stable for
values of our parameters which correspond to S=1 and above. We strongly believe however
that this ‘mode’ would become unstable (begin to oscillate) as we decrease the values for
the sti�ness and damping and we increase the Reynolds number in which case small pressure
di�erences along the length of the �lament would be enough to ‘perturb’ the system into
an oscillating (or even a chaotic) mode. Indeed, this would correspond to increasing the
dimensional length of the �lament and this e�ect was observed in experiment. Again, a
detailed investigation into this phenomenon will given in another article.
Figures 5, 8, and 9 show the Fourier transform versus non-dimensional frequency for var-

ious element angles corresponding to S=1:0, 0.5 and 0.2, respectively. The fundamental
frequency seems to be inversely proportional to the length of the �lament for the cases in
which the amplitude of oscillation is large (namely, S=1:0, 0.75, and 0.5), although more
data is needed to con�rm this. It is in contrast to that found for a lateral vibration of a bar
of length L �xed at x=0 and free at x=L where the frequency is inversely proportional
to L2 [10].
In addition, this is contrary to experimental evidence [1] where the �apping frequency

was measured to be independent of �lament length. However, it is unclear whether the
�uid velocity remained constant as the �lament length was changed in these experiments.
The �nite boundaries of the soap �lm may well have had a signi�cant in�uence on the
characteristic velocity for various �lament lengths, especially for large motion of the
free end.
For the S=0:2 case, shown in Figure 9, where the �apping amplitude is very small, the non-

dimensional fundamental frequency during the transient phase is lower than that for S=1:0
and 0.5. Also additional frequency modes are apparent, although this may be a function of
the transitory phase before oscillations begin to die out.
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Figure 9. Fourier transform of time evolution of the element angles as a function of non-dimensional
frequency and for an e�ective length of S =0:2.

Experiments in the soap �lms seem to show that the vortices released from the trailing
edge are much smaller than the amplitude of oscillation. This is not seen in our numerical
simulations. In fact for the numerical simulation the vortices are clearly derived from the
amplitude of oscillation as they are convected downstream (see Figure 6).
The Reynolds number quoted by Zhang et al. [1] for the soap �lm experiments is of the

order of 104. We note however that the �gures in Reference [1] clearly showed vortical
structures emanating from the trailing edge of the �lament, which furthermore clearly indi-
cates a laminar �ow. It has been noted [11] that some 3D instabilities normally associated
with turbulence (roll instabilities in 3D Couette �ow) are completely suppressed by the soap
�lm hydrodynamics. This suppression of �ow phenomena may also be occurring for the ex-
periments but is not simulated in the numerical experiments. In the experiments no vortical
structures are seen which are convected downstream from the leading to trailing edge. This
may be due to the vorticity that is generated in the viscous boundary layer being constrained
by the surface tension forces to lie in the domain where surface tension dominates. They are
only released when, at the trailing edge, the pressure di�erence can overcome the surface ten-
sion. It is noted however that the vortical structures do seem to be released at similar positions
to that found in ‘true’ �uid �ow [11] for non-deforming bodies, in which the characteristic
diameter is larger than that found with the silk �lament.
As noted by Martin and Wu [4] the surface viscosity tends to dominate the �uid �ow phe-

nomena in soap �lms. The �uid �ow pro�les seem to be that normally seen with considerably
lower Reynolds numbers, although Reynolds numbers evaluated from the bulk viscosity given
in Reference [4] are high. This may again be due to the dominance of the surfactant layer sur-
face viscosity. It has proved extremely di�cult to ascertain the exact corresponding Reynolds
number for a numerical simulation of the �ow in a soap �lm. This will need signi�cant further
investigation.
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CONCLUSIONS

We have simulated the properties of the time-dependent �uid structure interaction of a thin
�lament in a 2D �owing �uid by using the ‘�ctitious domain’ method. The mesh used in
the computational algorithm is stationary, although large amplitude motion of solid bodies are
observed. This is in contrast to other methods where the mesh moves with solid boundaries,
an example of which can be found in Reference [12]. The motion of the �lament is gross and
there are no assumptions concerning the ratio of �lament motion to that of �lament length.
The numerical simulations support experimental of Zang et al. [1] evidence that two stable
states exist. We have identi�ed a stable mode in which the �lament is seen to oscillate. We
may reduce the e�ective length of the �lament and the initial oscillations are seen to be
strongly suppressed. By contrast to the experiment, vortical structures are developed at the
leading edge and they are preferentially grow within the curvature of the �lament. These
vortices are subsequently convected downstream and are released at the trailing edge. As in
the experiments, the sign of the released vortex alternates with the direction of the oscillation.
We note that the �uid forces exerted on the �lament in the numerical simulation are due to
pressure only. This e�ect has been seen in the experiments [1] where the ‘�apping’ motion
is limited to about two wavelengths of the ‘free’ end for a long �lament.
Clearly, many more investigations will be needed to study the numerical accuracy of our

procedure in detail, although we note here that re�nement of our mesh and increasing the
number N of elements in the �lament was not seen qualitatively to a�ect our results greatly.
We note that many of the problems associated with the numerical stability of our procedure
were extensively studied previously in related work for arti�cial heart values of Fenlon et al.
in References [5, 6]. We would also wish to further map out the behaviour of this strongly
coupled system as a function of parameters such as Reynolds number, sti�ness and damping
terms, boundary condition, and the ‘e�ective length’ of the �lament. We would also wish
to determine the extent of the viscous force acting parallel to the �lament. It would also
be highly desirable to carry out simulations for simulation parameters that are clearly in the
‘overdamped’ regime. We would expect the oscillations to die away completely in this case.
However, we note that our simulations are clearly capturing some of the essential physics
occurring in this system, and that the simulations presented in this article constitute a highly
non-trivial computational problem.
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